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Abstract
Using the φ-mapping method, we argue that ferromagnetic spin-triplet superconductors allow
the formation of unstable magnetic monopoles. In particular, we show that the limit points and
the bifurcation points of the φ-mapping will serve as the interaction points of these magnetic
monopoles.

Topological solitons play important roles in many fields of
physical science ranging from condensed matter physics to
QCD [1]. In [2], Babaev derived a dual presentation of the
free energy for ferromagnetic spin-triplet superconductors in
terms of gauge invariant variables. The similarity between
this dual presentation and the energy function of the Faddeev
model [3] reveals the nontrivial topological structure of these
superconductors. Based on this topological structure, one
can conclude that these superconductors allow the formation
of stable knotted solitons [2]. In this paper, making use
of the φ-mapping method [4], we argue that ferromagnetic
spin-triplet superconductors allow the formation of unstable
magnetic monopoles. In particular, we show that at the limit
points of the φ-mapping, these magnetic monopoles will be
created or annihilated in pairs, and at the bifurcation points of
the φ-mapping, they will interact with each other.

First, we review the dual presentation of the free energy for
ferromagnetic spin-triplet superconductors. We write the order
parameter of the spin-triplet Bose condensate as �(x, t) =√

n(x, t)ζ(x, t), where n is the total density and ζ is a
normalized spinor. Then the free energy of the spin-triplet
superconductor reads [2]

F =
∫

dx

[
h̄2

2M
(∇√

n)2 + h̄2n

2M

∣∣∣∣
(

∇ + i
2e

h̄c
A
)

ζ
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2

− μn + n2

2

[
c0 + c2〈F〉2

]+ B2

8π

]
, (1)

where the average spin 〈F〉 = ζ †Fζ . All degenerate spinors
are related to each other by gauge transformation eiθ and spin
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rotations U(α, β, τ ) = e−iFzαe−iFyβe−iFzτ , where (α, β, τ )

are the Euler angles. Minimizing the energy with a fixed
particle number, the ground state structure of �a(r) can be
found [5]. In the ferromagnetic state where c2 < 0, the energy
is minimized by 〈F〉2 = 1 and the ground state spinor and
density are [5]

ζ = eiθU
( 1

0
0

)
= ei(θ−τ)

⎛
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e−iαcos2 β

2√
2cos β

2 sin β

2

eiαsin2 β
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⎞
⎠ ,

no(r) = 1

c0 + c2
μ.

(2)

Because the distinct configurations of ζ in equation (2) are
given by the full range of the Euler angles, the symmetry
group of the ferromagnetic state is SO(3) [5]. Introducing new
variables �s = (s1, s2, s3) = (sin β cos α, sin β sin α, cos β)

and C = M
en J, where J = i h̄en

M (ζ †∇ζ − ∇ζ †ζ ) − 4e2n
Mc A is

the supercurrent, the free energy (1) in the ferromagnetic state
can be expressed as [2]

F =
∫

dx

[
h̄2

2M
(∇√

n)2 + h̄2n

4M
(∇�s)2 + n

8M
C2

+ h̄2c2

128πe2

(
εabcsa∇sb × ∇sc − 1

h̄
∇ × C

)2

− μn + n2

2
[c0 + c2]

]
. (3)

Here and thereafter, summations over the repeated indices are
assumed. According to free energy density (3), the magnetic
field in the ferromagnetic spin-triplet superconductor is
separated into two parts: the contribution from the supercurrent
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J and the self-induced magnetic field B̃ ≡ 1
4eεabcsa∇sb ×

∇sc, which is due to the nontrivial electromagnetic interaction
between the components of ζ .

In [2], Babaev only considered the superconductor in
a simply-connected space, which means the defects in the
superconductor do not feature the zeros of the order parameter.
Now, using the φ-mapping method, we will investigate the
case with n = 0 at some isolated points, and find that these
points correspond to magnetic monopoles. Furthermore, we
will study possible world-line configurations of monopole–
antimonopole pairs and multi-monopoles. Since π2(SO(3)) =
0, these monopoles are topological unstable. Technically, they
are the saddle points of the free energy (1), and can deform
into the spin textures in principle. However, if we confine the
parameters in the free energy (1) to a certain range, the relative
stability of the monopoles can, to a large extent, be guaranteed.
For simplicity, we will restrict our study to such a parameter
range in this paper.

We begin by introducing an internal vector field

�S = (S1, S2, S3) = √
n�s, (4)

and define a topological current as follows:

jμ = 1

4e
εμνλρεabc∂νsa∂λsb∂ρsc. (5)

It is easy to see that jμ is identically conserved. The
corresponding conserved charge density ρ = j 0 = ∇ ·B̃ serves
precisely as the source of B̃. Therefore we can speculate that
jμ is the current of the magnetic monopole. Using ∂μsa =
∂μSa/|�S| + Sa∂μ(1/|�S|), we obtain

jμ = − 1

4e
εμνλρεabc∂d∂a

(
1

|�S|
)

∂ν Sd∂λSb∂ρ Sc, (6)

where ∂a = ∂
∂Sa . Introducing the Jacobian vector

Dμ

(
S

x

)
= 1

3!ε
μνλρεabc∂ν Sa∂λSb∂ρ Sc, (7)

and making use of the Green function relation in �S-space:

∂a∂a

(
1

|�S|
)

= −4πδ(�S), (8)

we arrive at the following compact expression:

jμ = 2π

e
δ(�S)Dμ

(
S

x

)
. (9)

The δ-function included in equation (9) implies that jμ can be
nonzero only if �S = 0. So the zero points of �S are important
in determining the nontrivial jμ. We assume �S has N isolated
zero points denoted by zr (r = 1, . . . , N). According to the
implicit function theorem [6], �S = 0 has an unique continuous
solution under the regular condition

D0

(
S

x

) ∣∣∣∣
(zr ,t)

�= 0. (10)

This solution can be expressed as

xr = zr (t), (11)

which represents the N world lines of the magnetic monopoles.
To further illustrate the topological and physical meaning of
jμ, we need a more detailed expression for δ(�S). In δ-function
theory [7], given the regular condition (10), we can expand
δ(�S) as follows:

δ(�S) =
N∑

r=1

Wr

D0( S
x )|(zr ,t)

δ(x − zr (t)), (12)

where Wr is the winding number of the φ-mapping. From the
definitions of the Jacobian vector, we can obtain the velocity
vector of the magnetic monopoles:

dzi
r (t)

dt
= Di (S/x)

D0(S/x)

∣∣∣∣
(zr (t),t)

. (13)

From equations (9), (12) and (13), we find

j i = 2π

e

N∑
r=1

Wr
dzi

r (t)

dt
δ(x − zr (t)), (14)

ρ = j 0 = 2π

e

N∑
r=1

Wrδ(x − zr (t)). (15)

From equations (14) and (15), we can see that jμ is indeed
the current of the magnetic monopole. The nonvanishing
of jμ indicates the existence of the magnetic monopole.
The corresponding magnetic charge of the r th monopole
is given by the topological charge 2π

e Wr . To make the
energy finite in an infinite volume ferromagnetic spin-triplet
superconductor, the magnetic monopoles can exist only in the
form of the monopole–antimonopole pairs. In such a pair,
the monopole and antimonopole will be connected by a Dirac
string, or a doubly-quantized vortex, which belongs to the
trivial topological class of π1(SO(3)) = Z2.

From the perspective of mathematics, we describe the
monopoles by the vector field �S, which does not include the
Euler angle τ . This description cannot indicate the instability
of the monopoles. A more detailed description must involve
τ , and hence will reveal more detailed properties of the
monopoles. We leave this subject to future studies.

When condition (10) fails at some fixed spacetime points
(zr0, t0), i.e.

D0

(
S

x

) ∣∣∣∣
(zr0,t0)

= 0, (16)

we call (zr0, t0) a branch point of the φ-mapping, or a branch
point for short. In other words, the branch point is the point
determined by �S = 0 and D0( S

x ) = 0. There are two kinds
of branch points, namely the limit points and the bifurcation
points. If for at least one space index i ,

Di

(
S

x

) ∣∣∣∣
(zr0 ,t0)

�= 0, (17)
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we call (zr0, t0) a limit point. If for all space indices i ,

Di

(
S

x

) ∣∣∣∣
(zr0,t0)

= 0, (18)

we call (zr0, t0) a bifurcation point.
Here we first discuss the evolution processes of the

magnetic monopoles in the neighborhood of the limit point.
Because of equation (16), we cannot use the implicit function
theorem at the limit point as above. But we can use D1( S

x )

instead of D0( S
x ) to continue the discussion if we choose i = 1

in equation (17). This means that at the limit point (zr0, t0),�S = 0 has an unique continuous solution, which can be
expressed as

t = t (x1), (19)

x2 = x2(x1), (20)

x3 = x3(x1). (21)

Similar to equation (13), here we find

dt

dx1

∣∣∣∣
z1

r0

= D0(S/x)

D1(S/x)

∣∣∣∣
(zr0 ,t0)

= 0. (22)

Then the Taylor expansion of equation (19) in the
neighborhood of the limit point (zr0, t0) reads

t − t0 = 1

2

d2t

(dx1)2

∣∣∣∣
z1

r0

(x1 −z1
r0)

2 +(higher order terms). (23)

Ignoring the higher order terms, equation (23) represents a
parabola in the x1 − t plane. If d2t

(dx1)2 |(zr0,t0) > 0 (<0),
this parabola implies that at the limit point (zr0, t0), there is
a monopole–antimonopole pair created (annihilated). So we
can conclude that the limit points of the φ-mapping are the
points where the monopole–antimonopole pairs are created or
annihilated.

Now we turn to the evolution processes of the magnetic
monopoles in the neighborhood of the bifurcation point.
Due to equations (16) and (18), the velocity vector of the
magnetic monopole at the bifurcation point (zr0, t0) cannot be
determined by equation (13). In general, there will be more
than one velocity vector at the bifurcation point. So, in order
to find out all velocity vectors at the bifurcation point (zr0, t0),
we assume that

(
∂S1

∂x2

∂S2

∂x3
− ∂S1

∂x3

∂S2

∂x2

) ∣∣∣∣
(zr0,t0)

�= 0. (24)

Then, from the implicit function theorem [6], it follows that
there is an unique continuous solution to

S1(x, t) = 0, S2(x, t) = 0. (25)

This solution can be expressed as

x2 = f 2(x1, t), x3 = f 3(x1, t). (26)

Substituting equation (26) into (25), we obtain

S1(x1, f 2(x1, t), f 3(x1, t), t) ≡ 0, (27)

S2(x1, f 2(x1, t), f 3(x1, t), t) ≡ 0. (28)

From the differentiation of equations (27) and (28), and
the Gaussian elimination method, we can find all the first
and the second partial derivatives of f 1(x1, t) and f 2(x1, t).
Substituting equation (26) into S3(x, t) = 0, we obtain

F(x1, t) ≡ S3(x1, f 2(x1, t), f 3(x1, t), t) = 0. (29)

From the definition of the branch point, we have

F(z1
r0, t0) = 0. (30)

Using the partial derivatives of f 2 and f 3, as well as the
Cramer rule, it can be proved that

∂ F

∂x1

∣∣∣∣
(z1

r0,t0)

= 0,
∂ F

∂ t

∣∣∣∣
(z1

r0,t0)

= 0. (31)

Then the Taylor expansion of equation (29) in the
neighborhood of the bifurcation point (zr0, t0) reads

F(x1, t) = 1
2 A(x1 − z1

r0)
2 + B(x1 − z1

r0)(t − t0)

+ 1
2 C(t − t0)

2 + (higher order terms) = 0, (32)

where A = ∂2 F
(∂x1)2 |(z1

r0,t0)
, B = ∂2 F

∂x1∂ t |(z1
r0,t0)

and C = ∂2 F
(∂ t)2 |(z1

r0,t0)
.

From the partial derivatives of f 2 and f 3, the constants A, B
and C are calculable. Dividing equation (32) by (t − t0)2, and
taking the limit x1 → z1

r0 and t → t0, equation (29) gives rise
to

A

(
dx1

dt

)2

+ 2B
dx1

dt
+ C = 0. (33)

Similarly, we can also find

C

(
dt

dx1

)2

+ 2B
dt

dx1
+ A = 0. (34)

From equation (33) or equation (34), we can obtain the velocity
component dx1

dt . The other velocity components dx2

dt and dx3

dt

can be obtained from dx1

dt and the partial derivatives of f 2 and
f 3. Therefore, the different velocity vectors of the magnetic
monopoles at the bifurcation point (zr0, t0) can be determined
completely.

According to the different values of A, B and C , there are
four possible cases:

Case 1. For A �= 0 and B2 − AC > 0, we have two
different solutions to equation (33). This case implies that
two monopoles meet and then depart from each other at the
bifurcation point.

Case 2. For A �= 0 and B2 − AC = 0, we have only
one solution to equation (33). This case implies three different
evolution processes: (a) one multi-monopole splits into two,
(b) two monopoles merge into one, and (c) two monopoles
tangentially intersect at the bifurcation point.

Case 3. For A = 0, B �= 0 and C �= 0, the velocity
component dx1

dt = − C
2B or tends to infinity. This case implies

two different evolution processes: (a) one multi-monopole
splits into three, and (b) three monopoles merge into one at
the bifurcation point.
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Case 4. For A = 0 and C = 0, the velocity component
dx1

dt = 0 or tends to infinity. This case also implies two different
evolution processes which are similar to case 3.

When condition (24) fails, and all other 2×2 sub-Jacobian
also vanish at the bifurcation point (zr0, t0), we need to discuss
the evolution processes at the higher order bifurcation point.
This discussion will be more complicated, but the method will
be similar to that we used above. From the above analysis, we
can conclude that the bifurcation points of the φ-mapping are
the points where the monopoles interact with each other.

In conclusion, using the φ-mapping method, we have
argued that ferromagnetic spin-triplet superconductors allow
the formation of unstable magnetic monopoles. The limit
points and the bifurcation points of the φ-mapping serve as the
interaction points of these magnetic monopoles.
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